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Abstract—Temporal-constraint subgraph matching has
emerged as a significant challenge in the study of temporal
graphs, which model dynamic relationships across various
domains, such as social networks and transaction networks.
However, the problem of temporal-constraint subgraph
matching is NP-hard. Furthermore, because each temporal-
constraint contains a permutation of temporal parameters,
existing subgraph matching acceleration techniques demonstrate
limited applicability to temporal-constrained graphs. Traditional
continuous subgraph matching approaches prove inadequate
in addressing this complex problem due to their inability to
effectively handle temporal constraints. This paper addresses
the challenge of identifying subgraphs that not only structurally
align with a given query graph but also satisfy specific
temporal-constraints on the edges. We introduce three novel
algorithms to tackle this issue: the TCSM-V2V algorithm,
which uses a vertex-to-vertex expansion strategy and effectively
prunes non-matching vertices by integrating both query and
temporal-constraints into a temporal-constraint query graph;
the TCSM-E2E algorithm, which employs an edge-to-edge
expansion strategy, significantly reducing matching time by
minimizing vertex permutation processes; and the TCSM-EVE
algorithm, which combines edge-vertex-edge expansion to
eliminate duplicate matches by avoiding both vertex and edge
permutations. Notably, our optimal TCSM-EVE algorithm
achieves an average three-order-of-magnitude speedup on
large-scale datasets. Extensive experiments conducted across 6
datasets demonstrate that our approach outperforms existing
methods in terms of both accuracy and computational efficiency.

I. INTRODUCTION

Subgraph matching is a fundamental problem in graph
theory. Given a data graph d and a query graph q, the objective
is to identify all subgraphs of d that are isomorphic to q.
While most recent studies focus on subgraph matching in
static graphs [1]–[9] or continuous subgraph matching [10]–
[16], real-world graphs are often enriched with temporal
information. The following scenarios illustrate the critical role
of temporal subgraph matching in practical applications.
• In the financial sector, account transfers can be represented

as a temporal graph, where accounts are modeled as vertices
and transactions as time-stamped edges. Money laundering
schemes often manifest through complex transaction patterns
distributed over time [17]–[19]. Detecting such activities
necessitates the identification of suspicious subgraphs.

• In telecommunication networks, call and message logs gen-
erates temporal graphs, where users as vertices and com-
munications as timestamped edges. Analyzing these interac-
tions can reveal patterns such as frequent bursts or specific
sequences of messages. Identifying such temporal subgraphs
is essential for detecting fraudulent activities, including scam
operations and coordinated attacks [20]–[24].
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Fig. 1: A temporal bill circulation network in Ant Group.

Figure 1 illustrates a typical example of a financial bill
circulation network, as commonly seen in Ant Group’s data.
In this network, vertices represent entities such as enterprises,
banks, intermediaries, or individuals, while edges denote trans-
actions between them. Each edge carries a series of timestamps
indicating when these interactions occurred, where ti (i ∈ N )
forms an arithmetic sequence with a one-day interval. A major
risk in such networks stems from bill intermediaries, who pur-
chase acceptance bills from companies at a discount and resell
them to other enterprises or banks to capture interest margins.
For instance, the red-highlighted subgraph in Figure 1 depicts
a typical risk intermediary pattern [17]–[19], [25], where the
intermediary buys bills with cash and quickly transfers them
onward. Unlike traditional subgraph patterns, these trans-
actions are temporally dependent, requiring occurrences
within a specified time window ∆t. Incorporating temporal-
constraint subgraph matching thus significantly improves the
accuracy of risk detection in financial bill circulation networks.

Existing TCSM methods ( [20], [26], [27]) define edge tem-
poral order and global time window constraints but often gen-
erate numerous false positives. To address this limitation, our
proposed methodology introduces a dual-constraint Temporal-
Constraints framework that incorporates both sequential order
and temporal interval upper bounds, thereby reducing false
positives and improving accuracy in detecting financial fraud
patterns with varying urgency and intervals. Given the critical
importance of matching subgraphs with temporal constraints
across various applications, our research focuses on temporal-
constraint subgraph matching (TCSM). However, subgraph
matching is an NP-hard problem, and consequently, the TCSM
problem is also NP-hard (as demonstrated in Section 2). To
enhance the efficiency of subgraph matching and continuous
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TABLE I: Notations

Notations Descriptions

Gq and TC query graph and temporal-constraints
G data temporal graph

T CQ and T CQ+ temporal-constraint query graph
T O and PD temporal order and prec dictionary

FV(E) and T C forward vertex (edge) and time constraint
d.in(u), d.out(u) in-degree and out-degree of u
L(u) and N (u) label and neighbors of u

subgraph matching, researchers have proposed various ad-
vanced techniques. Despite the NP-hard nature of the problem,
these techniques can achieve subgraph matching within graphs
containing millions of vertices in milliseconds [1], [2], [5],
[10]–[12], [28]. However, they face significant challenges in
accelerating the TCSM problem. As a result, non-optimized
techniques may require up to kiloseconds to match a
temporal-constraint subgraph within a large temporal
graph. This inefficiency arises because the matching process
involves time-consuming permutations of vertices and edges
after each match to validate the temporal constraints.

We designed three efficient algorithms for the TCSM and
validated their effectiveness. The contributions are as follows:
• We introduce the TCSM-V2V algorithm, which performs

vertex expansion in a vertex-to-vertex manner. This algo-
rithm merges the query and temporal-constraints graphs
into a Temporal-Constraint Query Graph (T CQ), which
leverages temporal-constraints to prune final vertices and
reduces unnecessary duplicate matches.

• We present the TCSM-E2E algorithm, which utilizes an
edge-to-edge expansion approach. This algorithm integrates
the query graph and temporal constraints graph into the
T CQ+ graph. By minimizing the vertex permutation pro-
cess inherent in the TCSM-V2V algorithm, this method
significantly reduces the matching time.

• We propose the TCSM-EVE algorithm, which employs an
interactive edge-vertex-edge expansion strategy. This ap-
proach produces results without the need for vertex and
edge permutations, minimizing duplicate matches.

• Experiments conducted on 6 real-world temporal datasets
demonstrate that our TCSM-EVE algorithm consistently
outperforms other algorithms in nearly all scenarios. For
instance the TCSM-EVE algorithm takes only 2.5 seconds
to match query q1 with temporal constraint tc2 on the
WT dataset, achieving an average three-order-of-magnitude
speedup compared to baseline algorithms.

• The code is available at https://github.com/xiaoyu-ll/TSI.

II. PRELIMINARIES

In this section, we first introduce several fundamental
concepts. A simple directed graph can be represented by
G = (V,E,L), where V is a set of vertices, E is a set of edges
where each edge is a pair (u, v) and u, v ∈ V , and L is a label
function that maps the vertex u ∈ V to a label L(u). Note that,
we only consider graphs with labeled vertices. However, if
edges are also labeled, the algorithm can be easily generalized.

Given a query graph Gq = (Vq, Eq,Lq) and a data graph
G = (V,E,L), a subgraph matching (isomorphism) is an
injective function f :Vq → V that satisfies: ∀u ∈ Vq , Lq(u)
=L(f (u)); and ∀(u,v) ∈ Eq , (f (u), f (v)) ∈ E.

In this paper, we focus on the problem of matching the
subgraphs with temporal constraints in the temporal graph.
We define the data temporal graph, the query graph, and the
temporal-constraint graph as follows.

Definition 1 (Data Temporal Graph (G)): A simple directed
data temporal graph can be represented by G = (V, E ,L, T ),
where V is the set of vertices; E is a set of temporal edges
where each temporal edge is (u, v, t), u, v ∈ V and t ∈ T
denotes the interaction time between u and v; L is a label
function that maps the vertex u ∈ V to a label L(u); T is a
set of all the timestamps.

By Definition 1, we use T (u, v) to stand for the set of
timestamps in which u and v and interacted, and e.t to
represent the interaction time of the edge e ∈ E in the temporal
graph. For a temporal graph G, the de-temporal graph of
G denoted by G = (V,E) is a graph that ignores all the
timestamps associated with the temporal edges. More formally,
for the de-temporal graph G of G, we have V = V and
E = {(u, v)|(u, v, t) ∈ E}.

Definition 2 (Query Graph (Gq)): A query graph Gq =
(Vq, Eq,Lq) is a labeled simple directed graph.

Assuming that set Eq in Gq adheres to a specific order
{e1, e2...e|E|}, we define the temporal-constraint graph that
adheres to the temporal constraints as follows.

Definition 3 (Temporal-Constraints (TC)): The temporal-
constraint TC is a set of triples, in which each triple (i, j, k)
represents that the interaction time of ej minus the interaction
time of ei is not larger than k, i.e. 0 ≤ ej .t− ei.t ≤ k.

Based on Definition 3, it can be observed that TC is a simple
directed edge-weighted graph, indicating the absence of loops
and the exclusion of multiple edges within the graph’s struc-
ture, as illustrated in Figure 2(b). Subsequently, we present
a formal definition of the problem, which involves subgraph
isomorphism with temporal constraints on a temporal graph.

Definition 4 (Temporal-Constraint Subgraph Matching):
Given a query graph Gq = (Vq, Eq,Lq), the temporal-
constraints TC = {(i, j, k)} and a data temporal graph
G = (V, E ,L, T ), a temporal-constraint subgraph matching
(abbreviated as TCSM) from Gq to G under TC is an injective
function f : Eq → E which satisfies:

1) Isomorphism: ∀(uq, vq) ∈ Eq,∃(u, v, t) ∈ E →
f((uq, vq))=(u, v, t),Lq(uq)=L(u),Lq(vq)=L(v).

2) Temporal-constraint: Consider Eq={e1, e2...e|Eq|},
∀(i, j, k) ∈ TC → 0 ≤ f(ej).t− f(ei).t ≤ k.

Problem of TCSM: Given a query graph Gq , the temporal-
constraints TC, and a data temporal graph G, our task is to
find all the subgraph matchings from Gq to G under TC.

Example 1: Figure 2(a-c) show a toy example for query
graph Gq , temporal-constraints TC and data temporal graph
G. Figure 2(a) shows that Gq contains 5 vertices and
7 directed edges, and each vertex in Gq has a label
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Fig. 2: A toy example.

(Lq(u1, u5)=A;Lq(u2)=B; ...). Figure 2(b) indicates that TC
has 5 items (0 ≤ e1.t − e2.t ≤ 3; 0 ≤ e3.t − e2.t ≤
5; ...), which can be assembled into a form of graph. In
Figure 2(c), each vertices has a label, and each edge has a
timestamp ((v1, v2).t=6; (v2, v1).t=3; ...). A TCSM from Gq

to G under TC is highlighted in red, which is the matching
{u1, u2, u3, u4, u5 → v1, v2, v3, v7, v11}. We can observe that
their labels are matching (Lq(u1, u5)=A=L(v1, v11); ...), and
the temporal-constraints are satisfied (e1 → (v1, v2), e2 →
(v2, v1), 0 ≤ (v1, v2).t − (v2, v1).t=3 ≤ 3;...). However, if
temporal information is disregarded, the subgraph marked in
blue can be a traditional subgraph matching from Gq to G
since their labels are matching, and it is not a TCSM since
e2 → (v2, v1), e6 → (v6, v12), (v2, v1).t − (v6, v12).t= − 1,
conflict to 0 ≤ e2.t− e6.t ≤ 3.

Theorem 1 (NP-hardness of TCSM): The Temporal-
Constraint Subgraph Matching problem is NP-hard.

The proof of Theorem 1 can be established by considering
a special case: if the time constraint k in each triplet of the
temporal constraint is set to infinity, the Subgraph Matching
problem can be reduced to the TCSM problem. Since Subgraph
Matching is a well-known NP-hard problem, this reduction
demonstrates the validity of the theorem.

Challenges: As noted, the TCSM problem is NP-hard. Tradi-
tional Subgraph Matching methods use filtering, verification,
optimized matching order, and indexing (see Section 6), but
these face challenges in the TCSM context. First, the temporal
aspect adds complexities beyond static matching, requiring
structural matches in temporal graphs while satisfying tempo-
ral constraints. Second, temporal constraints affect the match-
ing order, increasing computational burden due to combina-
torial factors. Third, using decomposition and indexing leads
to unmanageable index sizes due to the added complexity of
matching order. In summary, existing optimization techniques
are not directly applicable to the TCSM problem.

III. BASIC ALGORITHM FOR TCSM

We propose an algorithm for TCSM with vertex expansion
in a Vertex-To-Vertex manner, abbreviated as TCSM-V2V.

u2 u1 u4 u3u5

tc1 tc3

𝒯𝒪 = {1:u2, 2:u1, 3:u4, 4:u5, 5:u3} ℱ𝒱 ={u1:{u2}, u4 :∅, u5 : ∅, u3 :{u4 ,u5}}
𝒫𝒟 = {u1 :u2, u4 : u2, u5 :u4, u3 :u2} 𝒯𝒞 = {tc1 :u1, tc2 :u3, tc3 :u5, tc4 :u5, tc5 :u3}

𝒫𝒟 
ℱ𝒱
𝒯𝒞 

tc4 tc2 tc5

Fig. 3: Temporal-Constraint Query Graph T CQ.

Before introducing the specific details of the algorithm, we
need to consider the following key observations.

O1. Matching Orders. Traditional methods prioritize match-
ing orders based on high-degree vertices, small candidate sets
and the structure of query graph. In TCSM , the matching
order must also consider the temporal-constraint.

O2. Candidates Filtering. Filtering methods based on neigh-
boring vertices, labels, and degrees are widely used to reduce
the candidate data vertices. However, these methods often
result in excessive candidates. Therefore, a more effective
approach is needed to further minimize the candidates.

O3. Validity Checking. It is necessary to employ certain
methods to determine whether a candidate data vertex can
match a query vertex. This can be done by checking the
edges between the query vertex and its matched neighbors,
or by using matrix calculations with the state space method.
However, both approaches are computationally demanding,
with the latter being more suitable for smaller data graphs.
Our goal is to develop a less resource-intensive and faster
pruning method for validating candidate data vertices.

O4. Temporal-Constraint Checking. Our solution needs to
find all subgraphs in the data graph that satisfy both the query
and the temporal-constraint graph. This requires the algorithm
to continuously check partial matches against both graphs.

Building on the four observations, we introduce the concept
of a temporal-constraint query graph, denoted as T CQ. The
T CQ encompasses not only the structural information of
the query graph and the temporal information of temporal-
constraint graph but also the matching order of the vertices and
the method by which each vertex candidate set is generated.

A. The construction of T CQ
The T CQ is formed by four hash tables Temporal Order

T O, Prec Dictionary PD, Forward Vertex FV , and Time
Constraint T C. As shown in Figure 3, the vertices are aligned
from left to right, indicating the order of the matching query
vertices. For two vertices connected by a solid line, the preced-
ing vertex is the prec (predecessor) of the subsequent one. For
vertices connected by a dotted line, the preceding vertex is a
member of the forward vertex of the latter vertex. The direction
of the arrows shows the direction of the corresponding edges
between the vertices in the query graph. The positions labeled
tc1 to tc5 indicate where time-based pruning should be applied
for each temporal constraint. The entire construction process
is summarized in Algorithm 1 (details are below).

In the following, we show how to construct the four attached
hash tables T O, PD, FV , and T C.
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Algorithm 1: T CQ(Gq,TC,G)
input : Gq , TC and G.
output: four hash tables T O, PD, FV , T C of T CQ.
// compute tsup for each query vertex

1 for each u ∈ Vq do tsup[u] = 0;
2 for each tc = (i, j, k) ∈ TC do
3 tsup[ei.u]++; tsup[ei.v]++; tsup[ej .u]++; tsup[ej .v]++;

4 T O[1] ← argmax
u∈Vq

{tsup[u]};

5 µ← 2;
6 while µ ≤ |Vq| do
7 V µ

q = {u|u ∈ Vq&u /∈ T O}, Nµ(u) = {v|v ∈ T O&(u, v) ∈ Eq};
8 T O[µ] ← argmax

u∈V
µ
q

{|Nµ(u)|};

9 PD[µ] = argmin
u∈Nµ(T O[µ])

{T O′[u]};

10 FV(µ)← Nµ(T O[µ]) \ PD[µ];
11 µ ++;

12 for each tc = (i, j, k) ∈ TC do
13 T C[tc] = argmax

u∈{ei.u,ei.v,ej .u,ej.v}
{T O′[u]};

14 return (T O, PD, FV , T C);

Definition 5 (Temporal-Constraint Support (tsup)): Given a
query graph Gq = (Vq, Eq,Lq) and the temporal constraints
graph, the Temporal-Constraint Support of a vertex u ∈ Vq

is the sum of the degrees of edges that contain u within the
temporal constraint graph, i.e., tsup(u) =

∑|Eq|
i=1 d(ei), u ∈ ei.

Temporal Order. The vertex ordering method is based on
tsup, prioritizing query vertices that have the highest support
and strongest connections with vertices already in T O. First,
tsup is calculated for each query vertex (Algorithm 1, Lines 1-
3). The vertex with the highest tsup is selected as the starting
vertex (Algorithm 1, Line 4). In case of a tie, the vertex with
the fewest candidates is chosen; if the tie persists, selection
is made randomly. Subsequent vertices are chosen based on
their connections to vertices in T O (Algorithm 1, Lines 7-8).

Prec Dictionary. In the context of T CQ, a query vertex is
developed from another query vertex. Specifically, the latter
becomes a candidate of T CQ because of the former, with the
former referred to as the prec of the latter. The Prec Dictionary
(PD) stores the predecessor of each query vertex (Algorithm
1, Line 9). Beyond the initial vertex, candidate data vertices
for matching are generated based on the partially matched
subgraph. Since the T CQ graph stores structural relationships
between vertices and their prec, candidate data vertices can be
identified from the neighbors of already-matched predecessors.
This approach reduces the size of candidate sets compared to
other traditional candidate filtering methods.

Forward Vertex. To maintain the integrity of the query graph
structure, Forward Vertex is created to track the neighboring
vertices that already in T CQ, excluding the prec (Algorithm
1, Line 10). This approach efficiently captures the structural
relationships in the query graph while ensuring the accuracy
of matched data vertices. When determining whether a data
vertex can match a query vertex, it is essential to verify the
presence of a corresponding data edge between the matched
data vertex (the match of this query vertex’s forward vertex)
and this data vertex. If the edge does not exist, the data vertex

u2 u3Vertices: u1

5 2

u4

3Tsup:

u5

37

u2

u3Candidate: u1

5 2

u4

3

𝒯𝒞𝒬:

u2 u1 u4 u3u5

tc1 tc3,tc4 tc2,tc5

𝒯𝒞𝒬 :u2 u1 u4 u5

Candidate: u3

2

𝒯𝒞𝒬 :

u2 u1 u4

u5Candidate: u3

2 3

𝒯𝒞𝒬: u2 u1

u4Candidate: u3

2 3

𝒯𝒞𝒬:

Fig. 4: The construction of T CQ.

cannot be considered a match for the query vertex.

Time Constraint. Once all query vertices within a temporal
constraint have been matched, it’s crucial to ensure that the
current partial match adheres to the temporal constraint. To
achieve this, T C is created to record the vertex that appears
last in T CQ for each temporal constraint. (Algorithm 1, Lines
12-13). When determining whether a data vertex can match a
query vertex, the temporal constraint must also be validated.
If the current partial matching fails to satisfy the temporal
constraints, then the data vertex cannot match the query vertex.

Theorem 2 (Complexity of building T CQ): The time and
space complexity of building the T CQ graph is O(|Vq|2 +
|Vq| · dmax + |T C|) and O(|Vq|+ |T C|), respectively.

The proof of Theorem 2 can get at the full version [29].
Example 2: Figure 4 shows the process of constructing

T CQ. The first step is to calculate the tsup for each ver-
tex to build the T O (recall Figure 2(b), tsup(u1)=d(e1) +
d(e2)=5; tsup(u2)=d(e1)+d(e2)+d(e3)+d(e4)=7; ...). Then,
we choose the vertex u2 with the highest tsup, and its neigh-
boring vertices (u1, u3, u4). Next, we choose the neighbor u1

with the highest tsup, and build the solid line from u2 to
u1 (which is stored in PD), the dashed line from u1 to u2

(which is stored in FV). Subsequently, we re-compute the
neighboring vertices of u2 and u1, but the candidate are still
u3 and u4. u4 is added into the T CQ, and (u2, u4) is added
into PD. Next, we re-compute the neighboring vertices and
the candidate vertices become u3 and u5, u5 is added into the
T CQ and this process is iterated for the remaining vertices.
In the final step, we build the T C to record the last appears
in T CQ for all the vertices in each temporal constraint.
(TC1 = (2, 1, 3) → e2, e1 → u2, u1 → T C(tc1) = u1;TC2 =
(2, 3, 5) → e2, e3 → u1, u2, u3 → T C(tc2) = u3; ...).

B. Algorithm TCSM-V2V
Given a temporal-constraint TC, a query graph Gq and

a data temporal graph G, TCSM-V2V recursively expands
partial matches by mapping query vertices to their respec-
tive candidates in accordance with T O, and evaluates their
structural and temporal information to determine whether they
satisfy FV and T C. The first step involves generating the
initial candidates for each query vertex. This process aims
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Algorithm 2: TCSM-V2V(Gq,TC,G)
input : Gq , TC and G.
output : all TCSM M from Gq to G under TC.
// generate initial candidate set (by def. 7)

1 for each u ∈ Vq do
2 for each v ∈ V do
3 if NLF(v, u) is true then u.C ← v;

// generate T CQ graph
4 (T O,PD,FV ,T C) ← T CQ(TC, Gq , G);
// matching process.

5 λ← 1, u← TO[λ], M ← ∅;
6 for each v ∈ u.C do
7 M [u]← v;
8 DFS (G, T O,PD,FV, T C,M, λ + 1);

9 Procedure DFS(G,T O,PD,FV ,T C,M ,λ):
10 if λ = |T O|+ 1 then
11 print M ;
12 else
13 u← TO[λ], u′ ← PD[u], u.C ← ∅;

// generate candidate in current state
14 for each uc ∈ N(M[u′]) do
15 if L(uc) = L(u) then
16 u.C ← uc;

17 for each v ∈ u.C do
18 if Validate(G, T C, FV , M , u, v, λ) is true then
19 M [u] ← v;
20 DFS (G, T O, PD, FV , T C, M , λ+1);

21 Function Validate(G, T C, FV , M , u, v, λ):
22 for each u′ ∈ FN(u) do
23 if e(M[u′], v) /∈ E(G) then
24 return false;

25 for each tc ∈ TC do
26 if M ∪ v do not satisfy time constraint tc then
27 return false;

28 return true;

to identify all potential data vertices while minimizing the
candidate set. Inspired by the Neighborhood Label Frequency
filtering technique [30], we introduce the neighbor label filter
to effectively filter data vertices for each query vertex.

Definition 6 (Neighbor Label Filter (NLF)): Given a query
graph Gq = (Vq, Eq,Lq) and a data temporal graph G =
(V, E ,L, T ) and the de-temporal graph G = (V,E) of G.
Given u ∈ Vq and v ∈ V , a neighbor label filter (v, u) is an
injective function m: v → u that satisfies:

1) L(v) = L(u).
2) d.in(v) ≥ d.in(u), d.out(v) ≥ d.out(u).
3) ∀ u′ ∈ N (u), ∃ v′ ∈ N (v), L(v′) = L(u′).

Algorithm 2 presents our TCSM-V2V algorithm. We first
find all the possible initial candidates in G for each query
vertex (Lines 1-3). Next, we generate T O, PD, FV , and T C
(Line 4). Then, we start the matching process by expanding the
partial match in vertex-to-vertex manner recursively following
T O (Lines 5-8). If all query vertices have been matched, we
output the result (Lines 10-11). Otherwise, we obtain the next
query vertex u in T O, the prec of u and set the candidate data
vertices set of u to empty (Line 13). We extract the candidates
data vertices of u based on the data vertex mapped to the
prec of u and the structural correlation between u and the
prec of u (Lines 14-16). For each candidate data vertex v
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Fig. 5: A specific matching process of algorithm 2.

of u, Line 18 checks whether there are edges between the
candidate data vertex and the data vertices matched to the
neighbors of u (Lines 22-24). If the query vertex u and the
already matched query vertices can form a temporal constraint
(tc) through their connecting edges, it is necessary to evaluate
whether the temporal relationships of the partial match, after
incorporating vertex v, satisfy the specified tc (Lines 25-27).
If so, we expand the partial match by matching the next query
vertex (Lines 19-20). Otherwise, the algorithm matches the
next candidate vertex or backtracks to the last query vertex.

Example 3: Suppose the partial matching is M = {u2 :
v2;u1 : v1;u4 : v7;u5 : v11}, we need to match vertex
u3. The first step involves generating candidate from PD,
so we match from the prec vertex of u3 from T CQ. The
prec vertex is u2 and M(u2) = v2. Among the neighbors
of v2, {v3, v4, v5, v6} are generated , which have same label
as u3. Then, we check whether the candidate vertices satisfy
FV . Consider M(u3) = v4, since FV[u3] = {u4, u5} →
v4 must have edge to M(u4) = v7 and M(u5) = v11,
conflit to v4 only has edges with v2 and v12 and does not
have edge with v7 and v11 in Figure 2(c). So v4 will be
removed from the candidates, and v5, v6 will also be removed
in this step. Next, we check whether the candidate vertices
satisfy T C. Consider M(u3) = v3, since T C(tc2, tc5) = u3,
TC2,TC5 → e3.t − e2.t ≤ 5, e2.t − e6.t ≤ 3, and e2.t =
(v2, v1).t = 3; e3.t = (v2, v3).t = 5; e6.t = (v3, v11).t = 1.
We can see that 0 ≤ 5−3 ≤ 5; 0 ≤ 3−1 ≤ 3, so M(u3) = v4
is a correct matching.

Theorem 3 (Complexity of Algorithm TCSM-V2V): The
time and space complexity of Algorithm TCSM-V2V is
O(2|Vq|×(|V |+dmax+|T C|)) and O(|Vq|+|T C|), respectively.

The proof of Theorem 3 can get at the full version [29].

IV. ADVANCED ALGORITHM FOR TCSM

A. The construction of T CQ+

In the previous section, we introduced a vertex-to-vertex
matching approach. However, the necessity of identifying spe-
cific graph patterns with temporal constraints within temporal
subgraphs leads to numerous time-consuming edge permu-
tation checks when using vertex-based matching methods.
Consequently, we are investigating an edge-based matching
algorithm as an alternative. In the edge-to-edge matching
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𝒯𝒪 = {1:e2, 2:e1, 3:e3, 4:e6, 5:e7 , 6:e4, 7:e5} ℱℰ = {e1: ∅, e3: ∅, e6: ∅, e7 :∅, e4 :{e2}, e5 :{e7 }}

𝒫𝒟 = {e1 :e2, e3 : e2, e6 :e3, e7 : e6, e4 :e7, e5 : e3} 𝒯𝒞 = {tc1 :e1, tc2 :e3, tc3 :e4, tc4 :e7, tc5 :e6}
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ℱℰ
𝒯𝒞 

Fig. 6: Temporal-Constraint Query Graph T CQ+.

method, the existing T CQ graph becomes inadequate, as the
fundamental matching unit shifts from vertices to edges. To
accommodate this transition, we propose the construction of
a new graph, denoted as T CQ+. This graph involves mod-
ifications to the Temporal Order (T O), Precursor Dictionary
(PD), and Time Constraint (T C), while also substituting the
concept of Forward Vertex (FV) with Forward Edge (FE).
The construction process for T CQ+ is detailed below.

The edge-based matching order must take into account both
temporal and structural constraints. Each edge to be matched
should share at least a common vertex with already matched
query edges in query graph, eliminating the need for post-
matching connections and expediting the pruning process. By
treating each edge as a vertex and connecting edges in a
temporal constraint when they share a common vertex, we
construct a Temporal-Constraint Forest (TCF ). For each pair
of edges within the temporal-constraint, if they are connected,
we establish an edge between them. This forest, composed
of interconnected trees, optimizes the matching process by
capitalizing on the interconnected nature of edges.

We also define temporal-constraint support (tsup) for each
query edge, which is the degrees of the edge in the temporal
constraint graph, i.e., tsup(e) =

∑|Eq|
i=1 d(ei).

Forward Edge. To maintain the integrity of the query graph
structure, we introduce the forward edge, is defined as a neigh-
boring edge of e that already in T O and shares a common
vertex with e distinct from the vertex shared between e and e’s
prec. Assuming that both two vertices of the query edge to be
matched are part of the vertices in certain previously matched
query edges, it is necessary to maintain the consistency of the
candidate data edge’s two vertices with the vertices of the data
edges that correspond to these matched query edges.

Algorithm 3 outlines the construction of T CQ+. The pro-
cess begins by building the TCF (Lines 1-8). Following this,
the tsup for each query edge is calculated (Lines 9-11). The
first edge is selected as the edge with the highest tsup (Line
13). Subsequent edges within the same forest are selected
based on their connection to a neighboring edge in T CQ+
and their tsup, with ties broken by choosing the edge with
the smallest candidate set (Line 18). This process continues
to organize all edges within each forest. When transitioning
between forests, the selected edge shares at least one vertex
with an edge already in T CQ+ and has the highest tsup (Line
25). For each query edge, its prec and forward edge is stored
(Lines 20-21 and 27-28). For each temporal-constraint, the
edge that appears last in T CQ+ is also recorded (Line 30).

Theorem 4 (Complexity of building T CQ+): The time and
space complexity of building the T CQ+ graph is O(|Vq|2 ·

Algorithm 3: TCQ+(Gq,TC,G)
input : Gq , TC and G.
output: four hash tables T O, PD, FE , T C of T CQ+.
// creat TCF for temporal-constraint graph

1 E ← ∅, V ← {(Ne|e∈ Eq)};
2 for each u ∈ Vq do
3 for each ei ∈ u.adje do
4 for each ej ∈ u.adje (ei ̸= ej ) do
5 if (i, j, k) ∈ TC then
6 E ∪ {(Nei

, Nej
)};

7 if (V , E ) is cyclic then
8 E \ {(Nei

, Nej
)};

// compute tsup for each query edge
9 for each e ∈ Eq do tsup[e] = 0;

10 for each tc = (i, j, k) ∈ TC do
11 tsup[ei]++; tsup[ej ]++;

12 µ ← 2, T O ← ∅, δ ← 0;
13 T O[1] ← argmax

e∈Eq

{tsup[e]};

14 while µ ≤ |Eq| do
15 for each e′, (Ne′ , NT O[µ−1]) ∈ E do δ ← δ + 1;
16 while δ >0 do
17 NE

µ = {e|∃e′ ∈ T O, (e, e′) ∈ E};
18 δ ← δ - 1, T O[µ] ← argmax

e∈NE
µ

{tsup[e]};

19 Nµ = {e|e ∈ T O&e ∩ T O[µ] ̸= ∅};
20 PD[µ] = argmin

e∈Nµ

{T O′[e]};

21 FE[µ] = {e|e ∈ Nµ&e ∩ T O[µ] ̸= PD[µ] ∩ T O[µ]};
22 for each e′, (Ne′ , NT O[µ]) ∈ E do δ ← δ + 1;
23 µ++;

24 NE
µ = {e|∃e′ ∈ T O, (e, e′) ∈ Eq};

25 T O[µ] ← argmax
e∈NE

µ

{tsup[e]};

26 Nµ = {e|e ∈ T O&e ∩ T O[µ] ̸= ∅};
27 PD[µ] = argmin

e∈Nµ

{T O′[e]};

28 FE[µ] = {e|e ∈ Nµ&e ∩ T O[µ] ̸= PD[µ] ∩ T O[µ]};
29 µ++;

30 for each tc = (i, j, k) ∈ TC do T C[tc] = argmax
e∈{ei,ej}

{T O′[e]};

31 return (T O, PD, FE , T C);
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Fig. 7: The construction of T CQ+

d2max + |Eq|2 + |T C|) and O(|Eq|+ |T C|), respectively.
The proof of Theorem 4 can get at the full version [29].
Example 4: Figure 7 shows the process of constructing

T CQ+. The first step involves constructing TCF and cal-
culating the tsup for each edge (recall Figure 2(b)). For
instance, given the temporal-constraint tc = (2, 3, 5), it is
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obvious that edge e2 and e3 have common vertex u2, so we
build an edge between edge vertices Ne2 and Ne3 . And also
build edges between Ne2 and Ne1 , between Ne4 and Ne7 .
tsup[e1] = 2; tsup[e2] = 3; ... Then, we choose the edge e2
with the highest tsup, and its neighboring edges (e1, e3, e4) to
candidate. Next, we choose the neighboring edge e1 within the
same forest that has the highest tsup, and build the solid line
between e2 and e1 (which is stored in PD). Subsequently,
we re-compute the neighboring edges of e2 and e1, but the
candidate are still e3 and e4. e3 is added into the T CQ+, and
(e2, e3) is added into PD. ... e4 is added into the T CQ+, and
(e7, e4) is added into PD and build the dashed line between
e4 to e2 (which is stored in FE). This process is iterated
for the remaining edges. In the final step, we build the T C
to record the last appears in T CQ+ for both edges in each
temporal constraint. (TC1 = (2, 1, 3) → e2, e1 → T C(tc1) =
e1;TC2 = (2, 3, 5) → e2, e3 → T C(tc2) = e3; ...).

B. Algorithm TCSM-E2E
We also need to generate initial candidates for each query

edge. To achieve this, we design a label degree filter to
determine whether a data edge ec can match a query edge
e, thereby minimizing the size of the candidate set.

Definition 7 (Label Degree Filter(LDF)): Given a query
graph Gq = (Vq, Eq,Lq) and a data temporal graph G =
(V, E ,L, T ). Given e ∈ Eq and ec ∈ E , a neighbor label filter
(ec, e) is an injective function h: ec → e that satisfies:

1) L(e.u) = L(ec.u), L(e.v) = L(ec.v).
2) d.in(ec.u) ≥ d.in(e.u), d.out(ec.u) ≥ d.out(e.u),

d.in(ec.v) ≥ d.in(e.v), d.out(ec.v) ≥ d.out(e.v).
Algorithm 4 presents our TCSM-E2E algorithm. We first

find all the possible candidates for each query edge (Lines 1-
3). Next, we generate T O, PD, FE , and T C (Line 4). Then,
we start the matching process by expanding the partial match
in edge-to-edge manner recursively following T O (Lines 5-
8). If all query edges have been matched, we output the
match (Lines 10-11). Otherwise, we obtain the next query
edge e in T O, the prec of e and set the candidate data
edges set of e to empty (Line 13). We extract the candidates
data edges of e based on the data edge matched to the prec
of e and the structural correlation between e and the prec
of e (Lines 14-16). For each candidate data edge ec of e,
Line 18 checks whether there is an intersection between the
candidate data edge and the match of FE(e). If the query edge
e and the already matched query edge can form a temporal
constraint (tc), it is necessary to evaluate whether the temporal
relationships of the partial match, after incorporating data edge
ec, satisfy the specified tc (Lines 24-26). If so, we expand the
partial match by matching the next query edge (Lines 19-
20). Otherwise, the algorithm continue to matches the next
candidate data edge or backtracks to the last query edge.

Example 5: Suppose the current partial match M =
{e2:(v2, v1, 3); e1 :(v1, v2, 6); e3: (v2, v3, 5); e6:(v3, v11, 1);
e7: (v11, v7, 7)}, we need to match e4. The first step in-
volves generating candidate from PD, so we match from
the prec edge of e4 from T CQ+. The prec edge is e7

Algorithm 4: TCSM-E2E(Gq,TC,G)
input : Gq , TC and G.
output: all TCSM M from Gq to G under TC.
// generate initial candidate set.

1 for each e ∈ Eq do
2 for each ec ∈ E do
3 if LDF (ec, e) is true then e.C ← ec;

// generate T CQ+ graph
4 (T O,PD,FE ,T C) ← TCQ+(TC, Gq , G);
// matching process.

5 λ← 1, e ← TO[λ], M ← ∅;
6 for each ec ∈ e.C do
7 M [e] ← ec,;
8 DFS (G, T O, PD, FE , T C, M, λ+1);

9 Procedure DFS(G, T O, PD, FE , T C, M, λ):
10 if λ = |T O| +1 then
11 print M ;
12 else
13 e ← TO[λ], e′ ← PD[e], e.C ← ∅;

// generate candidate in current state
14 for each ec ∈ M [e′].adje do
15 if L(ec.u)=L(e.u)&L(ec.v)=L(e.v) then
16 e.C ← ec;

17 for each ec ∈ e.C do
18 if Validate(FE , T C,M, e,ec,e′) is true then
19 M [e] ← ec;
20 DFS (G, T O, PD, FE , T C, M, λ+1);

21 Function Validate(FE, T C,M, e, ec, e
′):

22 if M[FE(e)] ∩ ec = ∅ then
23 return false;

24 for each tc ∈ TC do
25 if M ∪ ec do not satisfy time constraint tc then
26 return false;

27 return true;
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Fig. 8: A specific matching process of algorithm 4.

and M(e7) = (v11, v7, 7). Among the neighboring edges
of (v11, v7, 7), {(v2, v7, 6)} is generated, which is an edge
between vertex with label same as B and v7. Then, we check
whether the candidate edge satisfy FE . Consider M(e4) =
(v2, v7, 6), since FE[e4] = {e2} → (v2, v7, 6) must have
common vertex with M(e2) = (v2, v1, 3) in Figure 2(c). There
exist a common vertex between (v2, v7, 6) and (v2, v1, 3), so
M(e4) = (v2, v7, 6) can satisfy FE . Next, we check whether
the candidate edge satisfy T C. Consider M(e4) = (v2, v7, 6),
since T C(tc3) = e4, TC3 → e7.t − e4.t ≤ 4, and e7.t =
(v11, v7, 7).t = 7; e4.t = (v2, v7, 6).t = 6. We can see that
0 ≤ 7− 6 ≤ 4, so M(e3) = (v2, v7, 6) is a correct matching.

Theorem 5 (Complexity of Algorithm TCSM-E2E): The time
and space complexity of Algorithm TCSM-E2E is O(2|Eq| ×
(|E|+ dmax + |T C|)) and O(|Eq|+ |T C|), respectively.
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Fig. 9: T CQ+ in algorithm TCSM-EVE.
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The proof of Theorem 5 can get at the full version [29].

C. Algorithm TCSM-EVE

The key difference between algorithm TCSM-EVE and
algorithm TCSM-E2E lies in whether vertex pre-matching
occurs after each edge matching, depending on the addition of
a new vertex. Vertex pre-matching helps prune invalid matches
by ensuring that when a new query vertex u is added, its
matched neighbors align with all backward neighbors of u.

Example 6: Figure 9 illustrates the construction of the
TCQ+ in the TCSM-EVE algorithm. After each query edge,
we check for any newly introduced vertices; if any are present,
they are marked accordingly. For instance, when edge e2 is
added, the corresponding vertices u2 and u1 are introduced
and they are marked after e2. When edge e1 is incorporated,
no new vertices are introduced and as a result, no vertices are
marked. Similarly, when e3 is added, u3 is marked after it.

Definition 8 (Backward Neighbor): Given a query graph
Gq = (Vq, Eq,Lq), PD and a vertex u ∈ Vq which is added
because of query edge e, a backward neighbor of u, denoted
as BN (u), is a set that contains all neighbor vertices of u in
Vq except the common vertex between e and prec of e.

Algorithm 5 outlines our TCSM-EVE algorithm, which
shares similarities with the TCSM-E2E; thus, certain portions
are omitted for brevity. The matching process begins by
recursively expanding the partial match in an edge-to-edge
manner according to T O (Lines 1-3). Before matching the
second query edge, we verify whether the two data vertices
of the first edge can match the two query vertices of first
query edge. This entails confirming that there are neighboring
vertices of the data vertex that can match BN (u) of query
vertex u. If so, we proceed to match the next edge (Lines 4-5).
Upon matching all query edges, we output the match (Lines
7-8). If not, we retrieve the next query edge e, generating
the candidate data edges set for e (Lines 10-13). For each
candidate data edge ec of e, Line 15 evaluates the structural
and temporal constraints of the match between the candidate
edge and the query edge. If a match is feasible, we include it

Algorithm 5: TCSM-EVE(Gq,TC,G)
input : Gq , TC and G.
output: all TCSM M from Gq to G under TC.

// generate initial candidate set.
// ...
// generate T CQ+ graph
// ...
// matching process.

1 λ← 1, e ← TO[λ], M ← ∅;
2 for each ec ∈ e.C do
3 M [e] ← ec;
4 if Vmatch(e.u, ec.u) & Vmatch(e.v, ec.v) then
5 DFS(G, T O, PD, FE , T C, M, λ+1);

6 Procedure DFS(G, T O, PD, FE , T C, M, λ):
7 if λ = |T O| +1 then
8 print M ;
9 else

10 e ← TO[λ], e′ ← PD[e], e.C ← ∅;
// generate candidate in current state

11 for each ec ∈ M [e′].adje do
12 if L(ec.u)=L(e.u)&L(ec.v)=L(e.v) then
13 e.C ← ec;

14 for each ec ∈ e.C do
15 if M[FE(e)] ∩ ec ̸= ∅ & M ∪ ec can satisfy TC then
16 M [e] ← ec;
17 if {e.u, e.v}−{e′.u, e′.v} ≠ ∅ then
18 u ← {e.u, e.v}−{e′.u, e′.v};
19 v←{ec.u, ec.v}−{M [e′].u,M [e′].v};
20 if Vmatch(u, v) then
21 DFS(G, T O, PD, FE , T C, M, λ+1);

22 else
23 DFS(G, T O, PD, FE , T C, M, λ+1);

24 Function Vmatch(u, v):
25 for each u′ ∈ BN(u) do
26 if ∄ v′ ∈ N(v), L(v′) = L(u′) then
27 return false;

28 return true;

in the partial match (Line 16), and we check whether a new
vertex emerges in this layer of edge matching (Line 17). If
no not, we proceed to match the next query edge (Line 23).
However, if a new vertex does emerge, we assess whether this
data vertex can match the corresponding query vertex (Line
20). If the newly added vertex can be matched, we continue
matching the next query edge (Lines 23).

Example 7: To facilitate a better understanding of Algorithm
5 better, we provide the following illustrative example. When
matching newly added vertex u4 after edge e7 is matched, we
find that BN (u4) = {u2, u3}. We need to check whether the
neighbor vertex of v9 (the match of u4) can match both u2

and u3. For simplicity, we will assume that a match is feasible
if the labels correspond. The label of u2 and u3 is B and C,
respectively. In Figure 2(c), v9 has neighboring vertices with
labels B and A, allowing it to match u2, but not u3.

Theorem 6 (Complexity of Algorithm TCSM-EVE): The
time and space complexity of TCSM-EVE is O(2|Eq|×(|E|+
dmax + |T C|)) and O(|Eq|+ |T C|), respectively.

The proof of Theorem 6 can get at the full version [29].
Example 8: Figure 11 illustrates the matching trees gen-

erated by our algorithms. Edge-based matching outperforms
vertex-based matching by reducing the size of the matching
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Fig. 11: The matching trees of our algorithms.

TABLE II: Data Temporal Graph G

Dataset |V | |E| |E| Time span

CM 1,899 59,835 20,296 193 days
EE 986 332,334 24,929 803 days
MO 24,818 506,550 239,978 2,350 days
UB 159,316 964,437 596,933 2,613 days
SU 194,085 1,443,339 924,886 2,773 days
WT 1,140,149 7,833,140 3,309,592 2,320 days

tree. And integrating vertex matching further minimizes the
tree size by pruning unsuitable matches.

V. EXPERIMENTS

A. Experimental setup

Datasets. We utilize 6 datasets that have been commonly
used in temporal subgraph matching methods [31]. Table II
presents their statistics. All the datasets are downloaded from
https://snap.stanford.edu/data/. CM (CollegeMsg) is the sets
of messages on a facebook-like platform at UC-Irvine. EE
(email-Eu-core-temporak) is the sets of e-mails between users
at a research institution. MO (sx-mathoverflow) is the sets of
comments, questions, and answers on Math Overflow. UB (sx-
askubuntu) is the sets of comments, questions, and answers on
Ask Ubuntu. SU (sx-superuser) is the sets of comments, ques-
tions, and answers on Super User. WT (wiki-talk-temporal) is
the sets of users editing talk pages on Wikipedia.
Queries and Temporal-Constriants. We employed three
labeled queries and three temporal constraints between edges,
as illustrated in Figure 12. Each of these queries comprises six
vertices, while the temporal constraints vary in structure, being
linear, tree-shaped and graph-shaped, respectively. Further-
more, we conducted experiments with queries containing more
vertices and temporal constraints featuring more edges, yield-
ing similar conclusions. However, due to space limitations,
we refrain from reporting on those cases here. Additionally,
unless otherwise specified, comparisons are made between
query graph q1 and temporal-constraint tc2.
Algorithms. We established a baseline using a static subgraph
matching algorithm RI-DS [28], with an additional temporal
constraint. For comparison, we included several continuous
subgraph matching algorithms, SymBi [14], Turboflux [15],
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Fig. 12: Queries q and Temporal-Constriants tc.
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Fig. 13: Common fraudulent detection in Ant Group.

Graphflow [32], SJ-Tree [33], and IEDyn [34]. Additionally,
RapidFlow [10], CaLiG [12], NewSP [11] are the sota algo-
rithms in continuous subgraph matching, so we also modified
algorithms to satisfy temporal-constriants as our baseline.

B. Case Study

As illustrated in Figure 13, the application of our method
in the detection of fradulent at Ant Group provides a con-
crete example. In telecom fraud, the flow of funds typically
exhibits the characteristic of rapid circulation. Therefore, we
can employ a linear graph structure, where each subsequent

2501

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 09,2025 at 02:30:50 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Running time of various methods (second).

Methods CM EE MO UB SU WT

Symbi 0.004 0.003 0.197 0.199 0.289 4.377
Turboflux 0.004 0.033 0.174 0.267 0.357 6.118
Graphflow 0.001 0.183 0.128 0.108 0.146 5.164
SJ−Tree 0.023 0.030 0.319 0.180 0.231 56.67
IEDyn 0.003 0.003 0.185 0.195 0.323 4.981

RapidFlow 0.379 1.905 2.502 5.939 8.898 44.30
CaLiG 0.305 1.847 26.99 422.7 84.15 17682
NewSP 0.240 1.886 10.16 22.46 15.76 368.9
RI−DS 0.132 0.103 13.88 47.058 44.668 4071

TCSM−V2V 0.001 0.011 0.120 0.138 0.168 3.941
TCSM−E2E 0.008 0.102 0.118 0.089 0.125 3.518
TCSM−EVE 0.008 0.091 0.114 0.089 0.114 2.475

edge has a larger timestamp than the previous one, with a
minimal time difference, to detect such fraudulent activities.
And user behaviors associated with online brushing often
manifest as transactions with different merchants and temporal
intervals between each transaction. Thus, we can utilize a star-
shaped graph structure, where adjacent edges have distinct
time differences, to identify such activities. In practical appli-
cations, however, not all matched results correspond to fraud-
ulent users. Additional information is required to ultimately
determine whether the matched users are indeed engaging
in fraudulent activities. In the actual implementation at Ant
Group, our method achieved an accuracy rate of over 50%,
which is significantly superior to other detection approaches.

C. Experimental Results

Exp-1: Running time of various methods. Table III de-
lineates a comparative evaluation of the performance of five
continuous subgraph matching algorithms and four modified
baseline algorithms, with our proposed algorithms across
six distinct datasets. The empirical findings reveal that our
algorithms exhibit performance on par with extant methods on
smaller datasets, such as EE. However, they manifest enhanced
efficiency on medium-sized datasets when contrasted with
conventional matching algorithms. Notably, on large-scale
datasets encompassing millions of vertices, our algorithms
markedly surpass existing algorithms, thereby highlighting
their unparalleled efficiency and scalability. While these five
continuous subgraph matching algorithms may ostensibly ex-
hibit satisfactory performance, they fundamentally eschew the
integration of temporal-constraints within their computational
paradigms. Theoretical postulations suggest that the assimi-
lation of temporal-constraints into the computational process
is likely to precipitate a diminution in performance. In light
of these considerations, our algorithm evinces a pronounced
superiority in efficacy relative to these approaches.
Exp-2: The runtime distribution for building T CQ(+) and
performing matching. Figure 14 illustrates bar chart depict-
ing the runtime distribution for building T CQ(+) and per-
forming matching across the MO, UB and SU.The construc-
tion of T CQ(+) by algorithms TCSM-E2E and TCSM-EVE
takes more time than algorithm TCSM-V2V, with algorithm
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Fig. 14: Runtime distribution.
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TCSM-EVE requiring slightly more time than algorithm
TCSM-E2E. Conversely, the execution of the matching process
shows the opposite trend. This indicates that the efficiency of
algorithms TCSM-E2E and TCSM-EVE primarily attributed
to the effectiveness of their T CQ construction.
Exp-3: Scalability with different size of query graph and
temporal-constraints. Figure 15 presents line charts showing
the running times of various algorithms across a series of
queries, with |q| ranging from 3 to 10 and |tc| varying
from 2 to 6 on UB. The results reveal that running times
generally increase for all algorithms as |q| grows, reflecting
the corresponding rise in computational complexity. Since
these baseline algorithms are not designed for temporal graphs,
changes in |tc| do not influence their performance, and thus
they are excluded. The runtime of the TCSM-V2V algorithm
initially increases, then decreases sharply, and finally experi-
ences a gradual rise as |tc| grows. In contrast, the TCSM-E2E
and TCSM-EVE algorithms demonstrate a trend of gradually
decreasing runtime as |tc| increases. These observations in-
dicate that the TCSM-E2E and TCSM-EVE algorithms offer
better stability compared to TCSM-V2V.
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Fig. 16: Runtime with queries of different density.
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TABLE IV: The memory usages of the algorithms (MB).

Methods CM EE MO UB SU WT

Symbi 143 143 158 236 241 339
Turboflux 143 143 158 233 237 333
Graphflow 143 143 148 188 188 234
SJ−Tree 143 143 148 188 188 7977
IEDyn 143 143 155 222 225 308
RI−DS 114 115 121 145 121 165

RapidFlow 4.4 10.8 31 118 139 295
CaLiG 4.5 10.8 24 121 135 212
NewSP 4.4 10.9 28.4 101 117 163

TCSM−V2V 3.6 4.2 16.9 80 88.5 88.9
TCSM−E2E 5.1 11.7 34.6 143 158 512
TCSM−EvE 5.3 85.2 34.6 166 184 608

Exp-4: Scalability with query graph of different density.
Figure 16 illustrates line charts depicting the running times of
various algorithms across the UB, with density ranging from
0.5 to 3. Notably, the TCSM-E2E and TCSM-EVE algorithms
demonstrated optimal performance when the density near 1
to 1.5, suggesting that a balanced density of query graph
enhances their efficiency by simplifying graph topology. In
contrast, the TCSM-V2V algorithm exhibited diminished per-
formance when the density of query approached 1, indicating
that it may depend on a more complex graph structure for
optimal operation, likely due to its specific methodology for
handling vertex-to-vertex comparisons.
Exp-5: Scalability with different data temporal graphs.
We conducted experiments to assess the scalability of our
algorithms by varying |E| in the original graph, generating
four subgraphs for each dataset, and comparing the running
times of all algorithms on these subgraphs. The results for
the large graphs UB and SU dataset are shown in Figure 17.
As |E| changes, the runtimes of TCSM-V2V, TCSM-E2E and
TCSM-EVE increase smoothly. Moreover, across all param-
eter settings, our algorithm are significantly faster than these
baseline algorithms, reaffirming the findings from Exp-1 again.
Exp-6: Memory usages. Table IV compares memory usage
across all algorithms on multiple datasets. For smaller datasets,
our proposed algorithms use less memory, whereas on larger
datasets, their memory usage exceeds that of the baseline
algorithms but stays within an acceptable range. The memory
usage of the TCSM-E2E and TCSM-EVE algorithms is similar
and slightly higher than that of the TCSM-V2V algorithm.
Exp-7: The effect of queries q with vary |Lq|. Figure 18
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Fig. 20: Observations on failed enumeration in the UB.

illustrates the runtime performance of all algorithms when
querying a dataset with varying |Lq|. As |Lq| increases,
the baseline algorithms and TCSM-V2V algorithms exhibit a
general upward trend in runtime, while the TCSM-E2E and
TCSM-EVE algorithms display a decreasing trend with rela-
tively minor performance differences between them. Notably,
RI-DS reaches a local maximum in runtime when |Lq| is three.
Exp-8: The effect of data temporal graph G with vary
|L|. We generated five data graphs, each with a distinct |L|:
8, 12, 16, 20, and 24. Figure 19 illustrates the performance
of all algorithms on these synthetic datasets as |L| increases.
The runtime of all algorithms exhibits a declining trend as
|L| grows. Our algorithms consistently outperform all baseline
algorithms, reaffirming the findings from Exp-2 again.
Exp-9: Observations on Failed Enumeration. We designed
experiments to observe the total occurrences of failed enu-
merations and the specific layer in the matching tree where
the first failed enumeration occurred, which can serve as
an indicator of pruning efficiency. Figure 20 compares the
occurrences of failed enumeration and the layer of first failed
enumeration across all algorithms on UB. The results indicate
that the number of failed enumerations in edge-based matching
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Fig. 21: Number of matches and runtime with vary k.

is lower than that in vertex-based matching, and the first
failed enumeration occurs at a shallower layer in the matching
tree. Additionally, the TCSM-EVE algorithm exhibits slightly
fewer failed enumerations compared to TCSM-E2E, reflecting
a higher level of algorithmic efficiency.
Exp-10: Number of matches and runtime with vary
interaction time gaps k. Figure 21 illustrates line charts
depicting the number of matched instances and running times
of various interaction time gaps k in tc across the MO, UB
and SU datasets, with k ranging from 0 to 3000. Based on the
experimental results, it is evident that as the interaction time
gap k increases, the number of matched instances exhibits a
rapid growth followed by stabilization, with the computational
runtime demonstrating a similar pattern. This phenomenon
aligns with real-world observations, where a larger interaction
time window inherently includes more potential matches,
albeit at the cost of incorporating less relevant instances.

VI. RELATED WORK

A. Subgraph isomorphism on static graphs

Filtering-Based Methods. Several filtering methods focus on
features. For instance, label-and-degree filtering [35], [36]
considers a data vertex v a candidate for query vertex u if
v shares the same label as u and has a degree at least as
high as u. Neighborhood label frequency filtering [30] checks
if a candidate has sufficient neighbors with matching labels
compared to u. Recent approaches combine these methods
and incorporate pseudo-matching on nearby vertices or utilize
a spanning tree or DAG from the query graph [7], [37]–[39].

Ordering-Based Methods. The size of the search space
depends heavily on the order in which the query vertices
are matched. This is because the target of the query vertex
u must be selected from data vertices that are adjacent to
the targets of all previously matched neighbors of u. Several
efforts have been made to generate an optimal matching order
by first determining the target for the query vertex with the
fewest candidate vertices, thus keeping the search space for the
remaining query vertices small [1], [6], [39]–[41]. However,
there is no universal method for generating an optimal ordering
for arbitrary query graphs and data graphs [2], [42]. Therefore,
it is crucial to minimize the number of candidates.

Enumeration-Based Methods. These algorithms typically
adopt a recursive enumeration procedure to find all matches
and can be categorized into three types. The first, known as
Direct Enumeration, directly explores the data graph to find all
results, exemplified by QuickSI [43], RI [28], and VF2++ [44].
The second type, Indexing Enumeration, constructs indexes on
the data graph and uses these indices to answer queries, as
seen in GADDI [45], SUFF [46], HUGE [47], Circinus [48]
and SGMatch [49]. The third type, Preprocessing Enumeration,
generates candidate vertex sets for each query at runtime
and evaluates the query based on these sets. This method is
widely used in recent database community algorithms, such as
GraphQL [50], TurboISO [51], and CECI [7].

B. Subgraph isomorphism on temporal graphs

While subgraph isomorphism in static graphs is well-
studied, the temporal variant has received less attention, with
only a few algorithms addressing the Temporal Subgraph
Isomorphism (TSI) problem [1], [13], [22], [52]–[57]. For
instance, [53] sorts edges by their time series before matching,
while others [13], [22], [52], [54] focus on edge-by-edge
matching under global time constraints. Earlier research [58]
employed a vertex-by-vertex approach similar to the RI algo-
rithm [28]. Additional studies explore temporal graph pattern
matching using database query techniques [59]–[61]. Related
to TSI is the identification of temporal motifs, which are small,
recurrent subgraphs characterized by k vertices or m edges
[62], [63]. The definition of a temporal motif, as introduced in
[10], [64], involves matching a small query pattern with edges
that follow a specific order, although these studies mainly
focus on counting motifs of 2 or 3 edges. Other refinements
include constraining timestamp offsets [65] and finding motifs
with flow constraints [66]. [20], [26], [27] define edge order
and global time window, which can address some TCSM
problems where edges have sequential relationships but do
not emphasize temporal intervals between edges.

VII. CONCLUSION

We address the problem of Temporal-Constraint Subgraph
Matching (TCSM), which is inherently NP-hard. Traditional
techniques, such as candidate filtering, often struggle with the
complexities of TCSM . To overcome these challenges, we
developed three novel algorithms: TCSM-V2V, which utilizes
vertex-to-vertex expansion and leverages temporal constraints
to minimize duplicate matches; TCSM-E2E, which applies
edge-to-edge expansion, significantly reducing matching time
by minimizing vertex permutations; and TCSM-EVE, which
adopts an interactive edge-vertex-edge expansion strategy,
eliminating both vertex and edge permutations to further re-
duce duplicate matches. Extensive experiments on seven real-
world temporal datasets which popularly used demonstrate
that our algorithms consistently outperform existing methods,
achieving substantial reductions in matching time.
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